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Abstract. Early diagnoses of Alzheimer’s disease (AD) would confer many benefits. Several biomarkers have
been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have
played an important role. However, studies have focused exclusively on morphological characteristics. This
study aims to determine whether features relating to the signal and texture of the image could predict mild cog-
nitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information
and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150
features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain
an accurate and small logistic regression model, generated by a methodology that yielded a mean blind
test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and
one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according
to a prognostic index. The groups were statistically different (p-value ¼ 2.04e−11). These results demonstrated
that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing
notion that multimodal biomarkers outperform single-modality ones. © 2014 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JMI.1.3.031005]
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1 Introduction
It has been estimated that 44.35 million people are living with
dementia worldwide.1 Alzheimer’s disease (AD) is the most
common cause for this condition and is estimated to currently
affect 5.2 million people in the United States.2 Its hallmark
abnormalities are deposits of the protein fragment amyloid
beta (Aβ) and twisted strands of the protein tau, histopatholog-
ical evidence that can only be obtained from a post-mortem
biopsy. Because of this, physicians in clinical settings cannot
diagnose subjects with definite, but probable AD, as defined
by the NINCDS-ADRDA Work Group criteria.3 This has led
to the current search for robust and accurate AD biomarkers.

An early diagnosis of cognitive impairment confers many
benefits: it allows prompt evaluation and treatment of reversible
or treatable conditions (e.g., depression or vitamin B12 defi-
ciency), allows potential management of symptoms with medi-
cation, and enables potential inclusion in clinical trials.2

Therefore, many efforts are being made to develop a biomarker
capable of diagnosing AD as early as possible. To do so, many
studies have focused on distinguishing between subjects with a

mild cognitive impairment (MCI) which will progress to AD,
and those who will not. MCI is a condition in which a person
has problems with language, memory, or another cognitive abil-
ity and has been established as a risk factor for AD, representing
in some cases a transitional stage between normal aging
and AD.4

Several biomarkers from different information modalities
(e.g., biological samples, imaging features, and clinical data)
have been proposed for the early diagnosis of AD, and multi-
modal ones have been found to achieve the best accuracies.5–8

Among these, features extracted from magnetic resonance im-
aging (MRI) have played an important role, with studies focus-
ing on the morphometry of brain structures and patterns of brain
atrophy.9 However, changes in neural tissue properties, mea-
sured as signal- and texture-related features, could be able to
detect earlier and more subtle changes.10

The objective of this work was to determine whether using a
multivariate feature selection strategy within a multimodal data-
base, including MRI signal- and texture-related features among
many others, MCI to AD progression could be accurately pre-
dicted, and if such imaging features would play an important
role in the aforementioned prediction.
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2 Methods
Data used in the preparation of this article were obtained
from the Alzheimer’s disease neuroimaging initiative (ADNI)
database.11 The ADNI was launched in 2003 by the National
Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Admin-
istration, and private pharmaceutical companies and nonprofit
organizations as a $60 million, 5-year public-private partner-
ship. The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessments can
be combined to measure the progression of MCI and early
AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clini-
cians to develop new treatments and monitor their effectiveness,
as well as lessen the time and cost of clinical trials. The principal
investigator of this initiative is the Weiner VA Medical Center
and the University of California – San Francisco. ADNI is the
result of the efforts of many co-investigators from a broad range
of academic institutions and private corporations, and subjects
have been recruited from over 50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800 sub-
jects, but ADNI has been followed by ADNI-GO and ADNI-2.
To date, these three protocols have recruited over 1500 adults,
ages 55 to 90 to participate in the research. These recruits consist
of cognitively normal older individuals, people with early or late
MCI, and people with early AD. The follow-up duration of each
group is specified in the protocols for ADNI-1, ADNI-2, and
ADNI-GO. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-
to-date information, see Ref. 12.

Available information from biological samples, PETanalyses
and clinical data were obtained. Neuropsychological assess-
ments were not taken into account, given that the clinical diag-
nosis of MCI and AD was based on some of these.
Magnetization-prepared rapid acquisition with gradient echo
(MP-RAGE) images and their corresponding segmentation
masks were downloaded. The segmentation masks were pro-
vided by Heckemann et al13 using multiatlas propagation
enhanced registration, an automatic whole-brain multiregion
segmentation method. In order to continue studying the same
population as in previous works,14 only data and images
uploaded up to June 2012 were considered. The 98 MCI sub-
jects studied in such works were considered for this study, where
those with a reported progression to AD within the 24 months
following their baseline visit (BL) were considered as cases and
those who maintained a cognitive stability during the same
period of time were considered as controls. The 27 subjects
who left the study early were excluded, provided they had
not already shown progression.

Each MP-RAGE image was divided into 83 regions of inter-
est (ROI) using their corresponding segmentation masks. Four
cases and five controls were discarded due to misalignment
issues between the image and the segmentation mask. This
resulted in a database with 62 subjects whose demography
is shown in Table 1, where the average mini-mental state
examination (MMSE) score at the BL and the proportion of
subjects with an ε4 allele in the apolipoprotein E gene
(APOE4þ) are also detailed. Each ROI was measured for a
set of 13 morphometrical features (e.g., volume, superficial
area, and compactness), 28 features related to the signal dis-
tribution (e.g., entropy, mean, and skewedness), and 9

texture-related features (e.g., superficial volume, area, and
compactness of the intensity projection map). These 4150 fea-
tures, in addition to 208 biological features, 78 clinical features
and 47 PET-related features, were z-standardized (μ ¼ 0 and
σ ¼ 1) and used to construct a multimodal database from
which the feature selection algorithm would select a predictive
set. The biological features were obtained from apolipoprotein
E (APOE) genotyping, homocysteine and isoprostanes concen-
trations, urine and blood laboratory data, cerebrospinal fluid
(CSF) laboratory data, rules-based medicine plasma data,
University of Pennsylvania’s CSF and plasma biomarker
data, and TOMM40 polymorphism data;15 the clinical features
were obtained from a symptoms checklist, the family dementia
history, neurological and physical exams, demographic infor-
mation, and vital signs data; the PET-related features were
obtained from the Banner Alzheimer’s Institute NMRC sum-
maries analysis, the University of Utah PET analysis, and the
New York University’s FDG-PET hippocampus analysis.16

In order to select an accurate and compact set of features
capable of classifying controls and cases, a three-step multivari-
ate feature selection strategy was performed, as shown in Fig. 1.
The strategy includes a genetic algorithm used to rank features, a
customized forward selection (FS) methodology that selected
predictive features, and a backward feature elimination (BFE)
algorithm that removed redundant information.

During the first step, an explorative search was performed
using GALGO, the genetic algorithm in Ref. 17. In total,
1000 logistic regression models, each one with five features,
were generated. They evolved from an initial set of models
with random features throughout 300 generations, during
which replication, recombination and mutation processes took
place, and as with evolution, the fittest models survived and
reproduced. Fitness was defined as the accuracy of the logistic
regression model using a sevenfold validation strategy, ran-
domly selecting in every fold six-sevenths of the subjects to
train the classifier and the rest to test its accuracy.

Then, features were ranked according to their frequencies,
defined as the ratio of models in which they were included
to the number of models generated. An adjustment was made
to account for correlations. If any pair of features had a signifi-
cant Kendall correlation (p-value < 0.05) with a τ coefficient
larger than 0.8, the least frequent feature was removed, and
the frequency of the remaining feature was recalculated as
the ratio of models in which any of those two features were
included to the number of models generated.

Table 1 Characteristics of key variables. Third and fourth rows show
the p-value of the Mann-Whitney test, indicating the probability of
being independent to the class, and the area under receiver operating
characteristic curve (AUC), respectively, for gender, age, APOE4þ,
and MMSE.

Population
(women)

Mean
age (σ) APOE4þ

Mean MMSE
score (σ)

Controls 37 (10) 74.6 (6.4) 41% 27.8 (1.4)

Cases 25 (6) 74.6 (7.7) 64% 26.6 (1.7)

Mann-Whitney
test p-value

0.8 1 .07 .01

AUC 0.52 0.5 0.61 0.69
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The second step involved using the aforementioned rank to
generate a representative model by applying a customized FS
strategy. The classical FS strategy generates nested models, add-
ing the next best ranked feature one at a time, and selects the
model that results in the maximum fitness. To avoid the inclu-
sion of futile features, the classical FS strategy was modified. A
model was built using the features whose addition represented
any improvement in fitness with respect to their corresponding
parent model. In other words, only features with a positive
derivative value of the fitness curve were selected. Finally, in
the last step, the resulting model was reduced in size using a
BFE strategy, intended to remove features with redundant infor-
mation. During each cycle of this shrinking process, the fitness
of the FS model was evaluated after removing one feature at a
time. The feature whose elimination from its parent model
resulted in the largest fitness increase or in no fitness reduction
was permanently removed. This procedure was carried on until
no feature removal resulted in an equal or better fitness than its
parent model. Fitness for the FS and BFE strategies was defined
as the average accuracy of the test partitions from 62 random
sets, each with a training and test proportion of two-thirds
and one-third the size of the population, respectively. The
final model was assessed in the same way to obtain the final
performance of the model.

Since the subjects used as a test in each split of the second
and third steps of this methodology included subjects that had

already been used to train when obtaining the rank, they could
not actually be considered independent test subjects, and thus
the performance could be optimistically biased.18,19 To evaluate
the performance of a model using this same methodology in a
previously not seen population, the entire feature selection proc-
ess was performed 50 times, each time using only 90% of the
population. Once a final model had been obtained, the remain-
ing 10% of the population was used to test such a model.

Moreover, we tested whether the final model was powerful
enough to predict the risk of progressing fromMCI to AD over a
period of time longer than the 2-year window used to define
controls and cases. In order to do this, subjects were ranked
according to their prognostic index (PI). Subjects with a PI
larger than the median were considered as high-risk cases
and subjects with a PI smaller than the median were considered
as low-risk cases. The PI was defined as the fitted mean value of
the logistic regression model with the features from the pro-
posed biomarker in the entire population of the experiment.
Events were defined as any MCI to AD progression and the
time to event was defined as the number of days between the
BL and the visit in which they were first diagnosed with
AD, or their last recorded visit (had the subjects not shown cog-
nitive decline). Since there was no available information on
whether the latter subjects would eventually progress to AD,
they were considered as right-censored subjects. Having done
this, a Kaplan-Meier curve was plotted,20 and a concordance

Fig. 1 Diagram of the three-step multivariate feature selection strategy. First step: evolution of the fitness
of the 1000models throughout 300 generations. Second step: features are ranked and added into nested
models, only the features whose addition improve the fitness are kept (gray vertical line). Last step: model
is reduced in size.
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index (CI) obtained.21 The CI was obtained by analyzing all pos-
sible pairs of subjects (except those where the subject with the
shorter time to event was right censored) and evaluating whether
the subject with the longer time to event also had the smaller PI,
defining it as the proportion of agreements to the number of
evaluations.

3 Results
The proposed biomarker, found from a multimodal database
using a multivariate feature selection strategy, included six fea-
tures: one related to genotyping, three related to the MP-RAGE
image signal distribution, and two related to the MP-RAGE
image texture. It achieved an average accuracy and area
under the receiver operating characteristic curve (AUC) of
0.96 and 0.97, respectively. Tables 2 and 3 show a complete
list of the features found in the proposed model and the detailed
performance, respectively. Table 3 also includes the train and
blind-test performances of the 50 models obtained to evaluate
the bias of the methodology, resulting in an average blind-
test accuracy and AUC of 0.79.

The features from this model were neither exclusively in the
top of the rank obtained during the three-step feature selection
strategy, nor were they of significant importance for classifying
controls and cases on their own. Table 4 shows the top-ranked
features and a few other relevant features that will be discussed
later. Figure 2 shows the distribution of each feature for both
controls and cases, including their p-value for the Mann-
Whitney test; that is the probability of such feature being inde-
pendent to the class of the subjects.

The high- and low-risk populations were found to have sig-
nificantly different times to event, with a logrank-test χ2 p-value
of 2.04e−11, rejecting the null hypothesis that the two groups
have identical survival functions, and a concordance index of
0.827. The resulting Kaplan-Meier curve is shown in Fig. 3,
which also shows the number of nonprogressing (stable) sub-
jects at each tick of the x-axis for both groups.

4 Discussion
This work showed that brain MRI MP-RAGE signal- and tex-
ture-related features aid in the prediction of MCI to AD progres-
sion. To achieve this conclusion, a set of image analyses and
feature selection tools were used to explore the complex multi-
dimensional space of a multimodal database composed of bio-
logical, clinical, PET-, and MRI-related features. The proposed
model included a nonimaging feature and MRI features related
to signal and texture. It is important to notice that even though
there are two features that have no individual statistical power,
all features are shown to be significant when evaluated inside the
logistic regression model. That means that all features in the
model have coefficients in the logistic regression model with
a probability lower than 5% of being zero.

Interestingly, a few features that have been previously found
to be associated to AD were not found in the final model, and
some were not even found in the rank, meaning that not a single
model from the 1000 ones originally generated found such
information valuable. Hippocampal volume is one of such
cases, a measure that has been associated with progression
from MCI to AD with a relative risk of 0.69,22 but which
was not used by the feature selection strategy. However, the

Table 2 Features found in the proposed biomarker. The abbreviation that describes each feature was defined as ID.

Feature Modality ROI ID

Precision range MRIa Right middle frontal gyrus PR RMFG

Probability of value being greater than 3σ MRIa Left amygdala PG3 LA

Raw moment110 MRIb Right cerebellum RM110 RC

Raw moment200 MRIb Left medial orbital gyrus RM200 LMOG

TOMM40 maximum allele length Genotyping – TOMM40

Value at 0.1% MRIa Third ventricle V001 TV

aFeatures related to the signal distribution of the image.
bFeatures related to the texture of the image.

Table 3 Performance of the proposed biomarker and the 50 blind-tested models. The concordance index (CI) and the logrank-test χ2 p-value were
obtained from the risk analysis, the other measures via classification.

Mean accuracy
(95% C.I.)

Mean sensitivity
(95% C.I.)

Mean specificity
(95% C.I.)

Mean AUC
(95% C.I.)

CI Logrank-test
χ2 p-value

Proposed
biomarker

0.96 (0.84–1) 0.96 (0.75–1) 0.96 (0.82–1) 0.97 (0.87–1) 0.74 4.53e−8

50 models
(train)

0.99 (0.94–1) 0.99 (0.96–1) 0.99 (0.9–1) 1 (1–1) – –

50 models
(test)

0.79 (0.6–1) 0.85 (0.5–1) 0.7 (0–1) 0.79 (0.4–1) – –
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compactness of the right hippocampus was found at the middle
of the rank, as shown in Table 2, and although the volume is the
usually discussed predictor, this feature is still a measure of
shape. Another example is APOE4þ, which has been linked
to late-onset familial and sporadic AD23 and even though it
was found in the rank, it was not included in the final
model. Regarding biospecimens, the ones found highest in
the rank are shown in Table 2, but CSF levels of neither Aβ

nor tau, measurements recognized as potential predictors of
risk for developing AD in healthy and MCI subjects,24,25

were included. This shows that there exists more information
with AD predictive power than that previously found using uni-
variate analyses guided by biological hypotheses, such as the
ones used to identify the aforementioned predictors, and that
combinations of MRI features related to the signal distribution
and texture were shown to have a larger predictive power than

Table 4 Features ranked by their frequency. Last column (MW) shows p-values of the Mann-Whitney test.

Rank Modality Feature ROI Freq MW

1a MRI Value at 0.1% Third ventricle 32% 2.20e−5

2 PET Normalized CMRgl Right insula 26% 1.40e−4

3a Genotyping Max TOMM40 length – 25% 0.17

4 MRI Pðvalue > 3σÞ Right amygdala 23% 3.40e−4

5 MRI Pðvalue < 3σÞ Left inferiolateral remainder
of parietal lobe

22% 0.35

6 PET Normalized CMRgl Left middle temporal gyrus 20% 8.20e−5

7 Genotyping Mean TOMM40 length – 20% 0.37

8a MRI Raw moment200 Left medial orbital gyrus 20% 1.40e−3

9a MRI Pðvalue > 3σÞ Left amygdala 20% 3.60e−4

10 MRI Skewness Left parahippocampal and ambient gyri 19% 5.90e−5

11 MRI Raw moment200 Right subgenual frontal cortex 17% 1.90e−2

12 PET Normalized CMRgl Left superior and medial frontal giry 17% 1.40e−4

13 MRI Pðvalue > 3σÞ Right parahippocampal and ambient giry 15% 7.30e−4

14 MRI Pðvalue > 2σÞ Left parahippocampal and ambient giry 14% 1.60e−5

15 MRI Pðvalue > 2σÞ Right amygdala 11% 7.10e−4

16a MRI Raw moment110 Right cerebellum 11% 1.40e−2

..

. ..
. ..

. ..
. ..

.

21a MRI Precision range Right middle frontal gyrus 8% 0.75

..

. ..
. ..

. ..
. ..

.

30 MRI Compactness Right hippocampus 6% 3.60e−3

31 MRI Pðvalue > 3σÞ Left thalamus 6% 2.20e−2

32 Genotyping APOE4þ – 6% 7.40e−2

..

. ..
. ..

. ..
. ..

.

53 Biospecimen Platelets – 3% 6.00e−2

54 Biospecimen Epidermal growth factor – 3% 4.90e−2

55 Biospecimen Neutrophil gelatinase-associated
lipocal

– 3% 0.19

56 Clinical Participant has siblings – 3% 0.53

aFeatures found in the proposed model.
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any combination of these predictors, as was made obvious by
the lack of such features in the models.

The performance of the identified model is promising, but the
test partitions used to evaluate it were not truly blind to the meth-
odology. When tested in a new population, it will probably
underperform. However, the experiment in which 50 models
were obtained, each with a 10% of the population remaining
completely blind to the feature selection methodology, showed
that a test accuracy of almost 80% could be expected when
evaluating a different population using the suggested methodol-
ogy. Thus, it is viable for the proposed model to achieve such an
accuracy when faced with a new population, or even achieve a
slightly better one, considering that such a performance was cal-
culated for models trained using a smaller population than the
population with which the proposed model was trained. This
gap in performance estimates, shown with more detail in
Table 3, is an example of the optimistic results that may be
encountered in exploratory studies versus results obtained
under more stringent testing conditions.

The fact that almost all features are signal- or texture-related
indicates that these novel features could be helpful for the pre-
diction of MCI to AD progress. Interestingly enough, the
regions of the brain involved in this model are not often consid-
ered as relevant for AD etiology in the current literature unlike
the already mentioned hippocampus or the entorihnal cortex, a

structure shown to gradually improve the prognostic efficiency
compared with hippocampal volumetry.26 Thus, although these
regions may not show significant atrophy in either early or late
stages of AD, they may suffer changes in the properties of their
neural tissue which can be observed and quantified with these
signal- and texture-related features. This is especially relevant,
since such changes are thought to occur earlier than morphologi-
cal ones, allowing for an earlier diagnosis. Regarding the
biological feature found in the model, TOMM40, it has
already been reported to be associated to the prediction of
the age of late-onset AD in ε3 carriers of the APOE gene.27

Additionally, the fact that the proposed model was constructed
using features from different information modalities, namely
MRI and genotyping, supports the idea that multimodal bio-
markers outperform single-modality ones.

The risk analysis showed that the model could divide the sub-
jects into high- and low-risk groups. But, even more importantly,
though subjects were studied up to 983 days after their BL visit,
only three were categorized as high risk, indicating that this
model could accurately predict MCI to AD progression, even
3 years before progressing.

One limitation of this study was the population size, which
did not allow for a blind test within the ADNI population for the
proposed biomarker, although the average test performance of
the 50 models obtained using only a subset of the population
allowed for a valid expectation of how the proposed biomarker
would perform when classifying new subjects. Even though
ADNI has recruited more than 1000 subjects, the specific
requirements of this study greatly limited the number of partic-
ipants. An experiment in which the amount of information
required from each subject is reduced, thus allowing the popu-
lation size to be largely increased, is underway. It will challenge
this model and allow the identification of a more robust bio-
marker using a similar strategy. Despite this, the results and
the strategy used in this study are promising, and so is the
fact that people were accurately predicted to progress to AD
up to 2 years prior to their clinical diagnosis.

Additionally, Table 1 shows that gender, age, and APOE4þ
were not significantly different between controls and cases, but
that MMSE scores were. This difference implies that cases were
slightly more cognitively impaired than controls at BL, a some-
what expected result since diagnoses were partially based on this
score. Regardless, this difference only results in an AUC of 0.69.

Also, there were a few parameters in the methodology that, if
varied, could have resulted in a different biomarker. Such is the
case for the number of models generated in the first step of the
methodology and the size of each one of these models. However,

Fig. 2 Value distribution of features found in the proposed model across controls and cases. The p-value
of the Mann-Whitney test for every feature is shown at the bottom of the plot.

Fig. 3 Kaplan-Meier curve showing the different times to event
between low- and high-risk groups. The median of the PI was
used as the threshold to define group membership. The PI was
defined as the linear predictors of the logistic regression model
with the features of the proposed biomarker applied to the whole pop-
ulation in this study.
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the number of models was sufficiently large to allow for the rank
to reach stability. On the other hand, it could not be assured that
a change in the size of the models would not generate different
results. However, even if that were to happen, the conclusions
from this study would still be valid. The proposed biomarker is
just one solution from a universe of possible solutions to this
problem, but the fact that novel MRI features related to the sig-
nal distribution and texture aided in predicting the MCI to AD
progression would still apply.

In conclusion, brain MRI MP-RAGE images were analyzed
and several features were extracted from them, describing the
morphology, signal distribution, and texture of the brain. An
MCI to AD progression biomarker based in some of these im-
aging features and in one biological feature has been presented.
The model was selected from a multimodal database containing
almost 4500 features using a multivariate feature selection strat-
egy based on genetic algorithms. The performance of the pro-
posed biomarker is very encouraging, and a risk analysis
showed that using these features, subjects could be accurately
classified as having a high risk or a low risk of MCI to AD pro-
gression, even 3 years before clinical diagnosis.
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